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Abstract 
Personality neuroscience aims to discover links between personality traits and features of the 
brain. Previous neuroimaging studies have investigated the connection between the brain 
structure, microstructural properties of brain tissue or the functional connectivity (FC) and 
these personality traits. Analyses relating personality to diffusion weighted MRI measures 
were limited to investigating the voxel-wise or tract-wise association of microstructural 
properties with trait scores. We expanded past work in two ways by focusing on the entire 
structural connectome (SC) and by predicting personality trait scores instead of performing a 
statistical correlation analysis in order to assess an out-of-sample performance and determine 
whether there is an individually predictive relationship between the brain SC and the big five 
personality traits. Prediction of personality from the SC is however not yet as established as 
prediction of behavior from the FC, and sparse studies in this field so far delivered rather 
heterogeneous results. We therefore further dedicated our study to investigate if and how 
different pipeline settings influence prediction performance. In a sample of 426 unrelated 
subjects with high quality MRI acquisitions from the Human Connectome Project, we analyzed 
19 different brain parcellations, three SC weightings, three groups of subjects and four feature 
classes for the prediction of the five personality traits using a ridge regression. From the large 
number of evaluated pipelines, only very few lead to promising results of prediction accuracy 
r > 0.2, while the vast majority lead to a small prediction accuracy centered around zero. A 
markedly better prediction was observed for a cognition target confirming the chosen methods 
for SC calculation and prediction and indicating limitations of the personality trait scores and 
their relation to the SC. We therefore report, that for methods evaluated here, the SC cannot 
predict personality trait scores. Overall, we found that all considered pipeline conditions 
influence the predictive performance of both cognition and personality trait scores and should 
be chosen carefully according to the problem at hand. The strongest differences were found 



for the trait openness and the SC weighting by number of streamlines which outperformed the 
other traits and weighting respectively. 
 

1 Introduction 
 
Personality strongly affects interindividual differences of human behavior as well as personal 
strengths and vulnerabilities influencing all aspects of life [1]. Personality neuroscience 
therefore aims to explore the neurobiological basis of personality. One of the most generally 
recognized and comprehensive models of personality is the Five-Factor Model (FFM), also 
known as the big five personality traits [2]. It describes five major dimensions of personality as 
openness to experience, conscientiousness, extraversion, agreeableness, and neuroticism. 
Scores for these dimensions are acquired from subjects by completion of self-report 
inventories. 
From the neurobiological side, diffusion-weighted magnetic resonance imaging (dwMRI) 
measures the directional diffusion of water molecules in the brain [3] and enables both the in-
vivo mapping of white matter (WM) tracts using tractography algorithms [4] and the estimation 
of microstructural properties of the WM [5]. It therefore offers a diverse and novel insight into 
the human brain in addition to structural and functional MRI and opens up further options to 
investigate neural correlates of personality accordingly. Here, we aim to investigate if there is 
an individual predictive relationship between the structural connectome (SC) of the brain 
calculated from dwMRI acquisitions and the big five personality trait scores. 
 
Apart from prior research investigating neural correlates of personality extracted from 
structural or functional MRI (e.g. [6], [7]), there has been previous work relating structural 
properties of the brain WM extracted from dwMRIs with the FFM personality traits. The 
majority of these studies used a technique called tract-based spatial statistics (TBSS) [8]. 
TBSS is a voxel-wise analysis of multi-subject diffusion data to relate different microstructural 
properties of the WM, which can be calculated using e.g. diffusion tensor imaging (DTI), to a 
certain target – here, personality trait scores. Most commonly, fractional anisotropy (FA) and 
mean diffusivity (MD) were estimated for the analysis [9-16]. FA describes the fraction of the 
diffusion tensor that can be assigned to directionally dependent diffusion, and MD describes 
the average magnitude of diffusion in all directions [5]. However, results in these studies were 
quite heterogeneous. Leshem et al. [9], Jung et al. [10] and Wilhelms et al. [11] solely 
investigated the relationship with one trait (extraversion (Leshem), openness (Jung) and 
neuroticism (Wilhelms)) in different samples, and all reported statistically significant 
correlations for clusters of voxels and the respective personality trait. Other studies 
investigated all of the big five personality traits and reported statistically significant correlations 
only for a subset of traits. For example,  microstructural properties of several WM voxel 
clusters were found to correlate only with openness, neuroticism and agreeableness [12], 
neuroticism [13], conscientiousness [14], agreeableness and conscientiousness [15], or with 
all traits except openness [16]. Furthermore, a recent study of Avinun et al. [17] reported null-
findings for the relationship between mean FA across the brain and personality for all of the 
big five personality traits. 
Alongside the voxel-wise analysis, other approaches applied special tractography algorithms 
to track and select major and known WM tracts for each subject (see Ref. [18] for the specific 



algorithm used in the presented approaches) and calculate the average dwMRI 
microstructural properties along these tracts. The evaluated track properties can then be 
related to personality. While McIntosh et al. [19] investigated the relationship between the 
mean FA of 12 WM tracts and the traits extraversion and neuroticism, Lewis et al. [20] studied 
how the FA of 10 WM tracts related with openness, agreeableness, and conscientiousness. 
Both studies found statistically significant correlations with at least one tract for each of the 
considered personality traits. However, in another study Privado et al. [21] only found a 
connection between openness and the FA of some of the extracted tracts. The reported results 
on the relationships between dwMRI data and personality traits thus remain very sparse and 
heterogeneous also for the tract-wise analyses. 
The tract-based analysis of dwMRI data can be extended to the whole brain, where  the entire 
structural connectome (SC) can be calculated for each subject based on the whole-brain 
tractography (WBT) and a predefined parcellation of the gray matter (GM) [22]. In the first 
approximation, the SC is represented by an adjacency matrix, where each entry indicates 
whether any two regions of interest (ROIs) of the GM parcellation are connected with each 
other or not. The connectivity can then be defined in many different ways by weighting the SC 
adjacency matrix by using, for example, the number of streamlines (NOS) between two ROIs. 
Another SC weighting can also be the mean of any microstructural property, e.g., MD or FA 
of all voxels that the streamlines connecting two ROIs pass through. So far, only a few studies 
have related graph metrics of local and global efficiencies and clustering coefficient of the SC 
to personality traits of extraversion, neuroticism and openness to experience ([23], [24]).  
 
Overall, the available results on the relationships between dwMRI data and personality traits 
are rather fragmentary, heterogeneous and controversial, which calls for additional and more 
systematic investigations of this problem for sufficiently large subject cohorts and high-quality 
neuroimaging data. All of the above studies have in common that they correlated dwMRI 
measures with personality trait scores and therefore do not offer any insight into the 
generalizability of their findings.  On the other hand, predicting trait scores using machine 
learning (ML) algorithms in a cross-validation (CV) setting can, in contrast to statistical 
correlation analysis, give an indication on the out-of-sample performance and how 
generalizable certain findings and connections are ([25], [26]). Further, the relations between 
the SC itself and all five personality traits have so far not been thoroughly investigated and 
still await a systematic investigation. However, compared to the functional connectome (FC), 
the SC has been studied less as a predictor of individual phenotypes in general. In the process 
of calculating the SC from the diffusion MRI acquisition and predicting phenotypes from (the 
features of) the SC, there are many parameters that can each be adjusted in different ways. 
It has not yet been thoroughly investigated how the choice of brain parcellation, connectome 
weighting, feature selection of prediction and CV algorithm may influence the prediction of one 
or another personality trait for one or another subject group, e.g., males or females. While 
studies looking into these parameters did find differences between distinct settings, there are 
no clear best practices and parameter choices as there is a complex interplay between the 
different settings ([27], [28], [29]). 
 
In this work, we therefore aimed to extend available results on the relationship between 
personality traits and dwMRI in two ways by making use of the entire SC instead of using a 
voxel-wise or tract-based analysis and by applying a predictive CV method instead of a 
statistical correlation analysis for an assessment on the out-of-sample performance. 
Considering that the SC has been studied less as a predictor of behavior than the FC, we 



further dedicated our study to evaluate a large number of different pipelines for the prediction 
of personality trait scores. We varied the brain atlas, the SC weighting, the subject group and 
the feature class as well as feature selection process in order to unfold potential connections 
between the structural connectivity of the brain and personality and determine how they relate 
to different settings of the prediction process. 
  



2 Materials and Methods 
 
In this study we investigated whether and how personality trait scores can be predicted from 
the structural connectome (SC) calculated from diffusion-weighted MRI (dwMRI) data. To 
address this question, we considered a large number of pipeline conditions including different 
data processing and weightings, subject samples, feature classes and feature selections 
within classes as well as prediction targets. We considered many different pipeline conditions 
given that there are no established best practices yet for setting these conditions when 
predicting from the SC. Additionally, previous studies relating dwMRI measures to personality 
using voxel-wise or tract-based analysis showed heterogeneous results (see Section 1) and 
evaluating many different pipeline conditions enabled us to provide a broader picture on if and 
how personality and the SC are related. Overall, we compared the prediction results for 19 
different cortical parcellations, three SC weightings, four feature classes - three of them with 
additional conditions of feature selection - and three subject groups to predict five different 
personality traits. All these selections resulted in a total of 3,420 (19 x 3 x 4 x 5 x 3) different 
prediction pipelines that were repeatedly evaluated and compared for all considered cases of 
feature selection. An overview of the considered settings is schematically illustrated in Fig. 1. 
 

 
Fig. 1 Overview of different options that were evaluated for predicting personality trait scores from the 
structural connectome (SC). For every subject, 19 parcellations were used to calculate SC from dwMRI for three 
different SC weightings given by the mean diffusivity (MD), fractional anisotropy (FA) and number of streamlines 
(NOS). The predictions of 5 personality traits were separately performed by ridge regression for 3 subject groups 
and 4 feature classes that included several conditions of feature selection like number of features or a given region 
of used parcellation (see text for details). 

We used the 19 different state-of-the-art cortical parcellations as described in Ref. [30]. The 
parcellations were selected in a way to balance between parcellations derived from 
functional data and parcellations derived from structural data and provide a large variety of 
granularities from 31 to 210 regions of interest (ROI). 
For the connectome weighting, we considered the number of streamlines (NOS) connecting 
any two brain regions, calculated from the whole-brain tractography for a given parcellation 
[4]. We further employed the mean diffusivity (MD) and the fractional anisotropy (FA) [5] as 
connectome weighting. MD and FA are microstructural measures describing diffusion 



properties of the underlying tissue, where MD describes the average magnitude of diffusion in 
all directions, and FA describes the degree of directionality of the diffusion. A known limitation 
of streamline tractography is that the density of reconstructed connections is not necessarily 
closely reflecting the density of the underlying WM fibers as the number of reconstructed 
streamlines depends, e.g., on the distance between two ROIs, their size and the shape / 
curvature of the streamlines [31]. To correct for this, the spherical-deconvolution-informed 
filtering of tractograms (SIFT2) algorithm was developed to obtain a more quantitative 
measure for the connection density by calculating weights for each streamline based on the 
fiber orientation distribution (FOD) [32]. Therefore, in addition to the NOS-weighted SCs, we 
also investigated NOS-weighted SCs after the SIFT2 refinement and compared these two 
weightings for the larger ‘males and females’ subject group shown in Fig. 1. All other pipeline 
conditions (parcellation, feature classes and personality traits) were varied as for the case of 
NOS weighting. 
Further, we considered three subject groups, only females, only males and a mixed-sex 
subject group. Such a setup of subject groups was chosen to evaluate if there is an effect of 
sex on the personality prediction by SC. This consideration was motivated by previous 
findings, where an influence of sex on brain-personality correlations has been shown for GM 
[7] volume  and the resting-state functional connectivity [33]. 
For prediction, features need to be selected from the SC. The most strait forward form feature 
class considers the entire SC (whole-brain). Depending on the granularity of the parcellation 
scheme, the number of features in this feature class in most cases exceeded the number of 
subjects in our dataset. This may lead to problems with overfitting and therefore motivated us 
to consider three additional feature classes that selected / calculated a much smaller number 
of features from the SC (details in Section 2.4). 
 

2.1 MRI Data and Subject Groups 
The present study considered structural and diffusion MRI data from 560 healthy subjects from 
the Human Connectome Project (HCP) S1200 release dataset [34]. The dataset includes 
diffusion imaging data for 972 individuals. However, there are many siblings and twins within 
the dataset, and we here decided to only use groups of unrelated subjects to not obscure 
results by possible family effects. The local ethics committee of the HCP WU-Minn Consortium 
gave its approval for the study and written informed consent was obtained from all subjects. 
We created three subject groups of unrelated subjects. The first group consisted of n=426 
unrelated subjects (213 females, age 22-36 years, mean 28.5±3.7). This corresponds to the 
highest number of unrelated subjects with diffusion data and personality trait scores available 
preserving an equal ratio of males and females. The second group consisted of n=278 (age 
22-36 years, mean 29.3±3.7) unrelated males, and the third group was made up of n=278 
(age 22-37 years, mean 28.0±3.8) unrelated females. There are overlaps between the mixed-
sex group and the all-male and all-female group, respectively. In total, considering the overlap 
between groups, data from 560 subjects was considered. 
 
All data was acquired with a 3T Siemens PRISMA scanner. The T1-weighted (T1w) images 
were acquired at 0.7mm isotropic resolution, the diffusion weighted images (DWI) at 1.25mm 
isotropic resolution with 90 gradient directions at each of three shells with b-values of 1000, 
2000 and 3000 s/mm2 and a total of 18 b=0 scans. The high-quality diffusion acquisition from 
a total of 270 directions on three different shells, enables a more accurate estimation of the 



diffusion tensor and the microstructural properties derived from it, as well as the application of 
advanced methods for the estimation of fiber orientation distribution functions (fODFs) as a 
basis for tractography. For both T1w and DWI data, we used the minimally pre-processed 
images provided with the HCP dataset described in detail in Ref. [35]. 

2.2 SC Calculation 
For each subject we calculated 76 SCs based on the 19 different parcellations and the three 
different connectome weightings based on NOS, MD and FA as well as on the SIFT2-refined 
weighting (Fig. 1).  All SCs were based on the same whole-brain tractography (WBT) for each 
respective subject. To calculate the WBT and extract the SC matrices, we used the pre-
processed T1w and DWI data provided with the HCP dataset and an in-house pipeline 
optimized for parallel processing on high-performance computational clusters. The 
preprocessing included intensity normalization across runs, topup and eddy corrections and 
gradient nonlinear correction. A detailed description of the HCP pre-processed data can be 
found in Ref. [35]. 
 
The pre-processed images were used for co-registration between the T1w and DWI spaces 
by FSL [36], as well as for the estimation of linear and non-linear transformation matrices from 
the standard MNI space to the native T1w space and vice versa. GM, WM, cortical/subcortical, 
cerebellar, and cerebrospinal fluid masks were generated in the DWI space as part of the 
registration process. Further, MD and FA images were calculated from the DWIs for each 
subject using the dwi2tensor and tensor2metric functionalities of MRtrix3 [37]. After 
registration, the WBT was calculated. This part of the pipeline only used MRtrix3 functions. 
Shell- and matter-specific response functions were estimated using the dwi2response 
dhollander algorithm implemented in MRtrix3. Fiber orientation distribution functions (fODF) 
were then calculated using the multi-shell-multi-tissue constrained spherical deconvolution 
(MSMT-CSD) [38] in each voxel of the DWIs. Subsequently, the WBT was calculated using 
an anatomically constrained probabilistic fiber tracking algorithm with second-order 
integration. Anatomically constrained tracking algorithms discard streamlines ending in WM 
or CSF to obtain a more realistic set of streamlines [39]. The WBT density was set to 10M 
streamlines, and other tracking parameters were set as follows based on the recommended 
default values in MRtrix3: step size = 0.625 mm, angle = 45 degrees, minimal length = 2.5 
mm, maximal length = 250 mm, FOD amplitude for terminating tract = 0.06, maximum attempts 
per seed = 1000, maximum number of sampling trials = 1000, and downsampling = 3. 
 
For all atlases, only the cortical ROIs were selected. The brain atlas images were sampled in 
the volumetric MNI152 nonlinear 6th generation standard space included in the FSL software 
package [36]. To calculate the SC matrix from the WBT for a given parcellation, the atlas 
images were transformed to the native diffusion space for each subject using the pre-
calculated transformation matrices. Then the labeled voxels within the GM mask were selected 
as seed and target regions to define streamlines connecting any two regions in the 
parcellation. For the SC weighted by streamline count (NOS-weighted), the number of 
streamlines connecting any two regions was entered in the corresponding cells of the 
connectivity matrix. For the SC weighted by MD and FA, additional steps were necessary. In 
the first step, the mean FA / MD per streamline was determined by taking the mean over all 
voxels that a respective streamline passes through. Then, to determine the final weights of 
the SC matrix, the mean FA and MD values were averaged across all streamlines connecting 



any two regions of a given parcellation. For the SIFT2-weighted connectomes, a weight was 
first determined for each streamline using the tcksift2 function in MRtrix3 [37] such that the 
density of reconstructed streamlines more accurately represents the density of underlying 
fibers. These weights were subsequently summed up across all respective streamlines 
between any two regions resulting in a SIFT2-weighted connectome. For all SC matrices the 
diagonals containing self-connections were set to zero. 
 

2.3 Personality Trait Scores 
One of the most generally recognized and comprehensive models of personality is the Five-
Factor Model (FFM) also known as the big five personality traits [2]. It describes five major 
dimensions of personality as openness to experience, conscientiousness, extraversion, 
agreeableness, and neuroticism. To obtain a score for each of the big five personality traits 
for each subject, all selected subjects filled out the English version of the 60-item version of 
the Neuroticism/Extraversion/Openness Five Factor Inventory (NEO-FFI) by McCrae and 
Costa [40] as part of the Penn Computerized Cognitive Battery [41]. There were 12 items for 
each of the five traits and all items were answered on a Likert scale ranging from 0 (strong 
disagreement) to 4 (strong agreement). The total score for each trait was obtained by adding 
up the responses from the separate items. Items keyed inversely were reversed before 
computation so that the total score for each trait was in the range [0, 48]. Additional information 
on the trait scores, such as their distributions and correlations of the traits between each other 
can be found in Supplementary Fig. S1. 
 

2.4 Feature Classes 
Four feature classes were considered and derived from the SC for prediction of the personality 
trait scores (Fig. 1). 

1.  Whole-Brain: The first feature class was the entire upper triangle of the SC matrices 
(without diagonal). As the SC is symmetric, this included information from all structural 
connections considered in the respective parcellation. 

2.  Most correlated (corr) edges: The second class of features included a certain number 
k of SC edges that were most correlated with the personality traits across subjects. 
The selection of the most correlated edges was performed for the training set only and 
then applied to the test set to prevent data leakage. 

3.  Principal component analysis (PCA):  The third feature class was composed of k first 
principal components (PC) as determined by a PCA of the SC matrices explaining 
most of the variance of the SC across subjects. To prevent data leakage, the PCA was 
fit on the training set only.  

4.  Regional connectivity profiles (RCP): This feature class corresponded to separate 
rows of the SC reflecting the connectivity profile of a given brain region to the rest of 
the brain. For this case, every single row of the SC was evaluated as features. 

Depending on the granularity of the parcellation scheme, the number of features in the whole-
brain class in most cases exceeded the number of subjects in our dataset, which may lead to 
overfitting. This motivated us to consider the other feature classes above that contained a 
much smaller number of features, and that we compared with each other with respect to their 
prediction performance. For both the PCA and corr feature class, 19 different cases of feature 
selection were evaluated corresponding to different number of features k included in the 



analysis: k ∈ {1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, #ROIs}. The 
latter number #ROIs corresponded to the number of brain regions of a given parcellation 
according to its granularity and was added to the feature selection cases of the corr- and PCA-
classes in order to obtain the same number of features used in the RCP class. The RCP class 
also evaluated different cases of feature selection as each row of the SC was evaluated for 
the prediction. The number of different feature selection cases of the RCP feature class 
therefore depended on the number of ROIs of the considered parcellation. 

2.5 Prediction 
Taking into account the findings from literature concerning the impact of used prediction 
algorithms on the prediction performance ([28], [42], [27]) (see Discussion) and the 
computational burden of the different prediction models, we considered a simple Ridge 
regression model for the prediction of personality trait scores from SC features. Ridge 
regression is a linear model that penalizes the regression coefficients based on their l2-norm 
and is defined as in Eq. 1. 
 𝑎𝑟𝑔𝑚𝑖𝑛!∑ 	(𝑦" − β#𝑥" + 𝑏)$ + α∑ β%$&

%'()   Eq. 1 

A nested 5-fold cross validation (CV) was employed to tune the hyperparameter alpha of the 
ridge regression in the inner loop and assess the prediction performance on unseen subject 
samples in the outer loop. Alpha determines the strength of the l2-regularization, and the 
following values were evaluated in the inner loop of the nested CV: α in [0.001, 0.01, 1, 10, 
50, 100, 500, 1000, 5000, 10000]. The prediction performance was measured in terms of 
Pearson’s correlation between the predicted and empirical personality trait scores of the 
subjects in the test sets of the outer 5-fold CV loop. Then all five correlation values of the five 
different test sets were averaged such that a single prediction result was reported for a given 
CV procedure. The entire prediction procedure was repeated 100 times for different random 
splits of the data, which resulted in a distribution of prediction results (correlations) for each 
constellation of other conditions mentioned above. The 100 different random splits of the data 
were consistent across pipelines. 
 
The SC features used for prediction were normalized before being used as input to the ridge 
regression using a global min-max normalization. The global maximum and minimum feature 
values from the training set were selected to scale all features to the range [0,1] as described 
in Eq. 2:  
 𝑥*+,- = ./0,1"*!"#

0,1"*!$%/0,1"*!"#
, Eq. 2 

where x is the feature used for training and prediction, and trainmin and trainmax are the minimum 
and maximum feature values calculated of the training set. For the PCA feature class, the 
normalization was applied to the SC before fitting the PCA on the data. For the other methods 
- whole-brain, most correlated edges, and RCPs - the features were first extracted from the 
SC, and only the selected features were then normalized and used to determine the minimum 
and maximum of the training set. As the distribution of the NOS was very skewed and 
stretched towards large NOS values, a log10-function was applied to scale all edges with 
values > 0 before the normalization was used to obtain a more symmetric and condensed 
NOS distribution without affecting small values too much. 
 



2.6 Comparison of Feature Classes 
To compare the different feature selection methods (feature classes), for any specific pipeline 
of atlas – SC weighting – subject group – feature class – feature selection – target trait, we 
selected the best result from all evaluated feature selection scenarios. For example, for the 
pipeline MIST31 – NOS – mixed sex – PCA – openness, we ran the pipeline for 19 different 
numbers of PCs. To compare this pipeline to the same pipeline with another feature class, we 
chose the number of PCs that led to the best prediction results, i.e., the largest mean prediction 
accuracy of the test set averaged over 100 random data splits used for CV procedure. The 
same was applied to the feature classes of the most correlated SC edges and the RCPs, 
where we chose the best prediction results with respect to the number of correlated edges 
and appropriate brain region, respectively. Using this method, for each feature class, we only 
had one distribution of test correlations from 100 random data splits that represented the 
obtained upper boundary of prediction accuracy for this feature class. This selection process 
did not have to be applied for the whole-brain feature class as there was only one option 
(whole SC) for the feature selection. 
  
As the best number of PCs, best number of most correlated features and best RCP were 
chosen based on the prediction performance on the test set, these values represented an 
idealized performance estimate for each of the feature classes and might be overfit to this 
specific data set. For this reason, we performed additional calculations using another 
approach for the best feature selection. In this case these variables were independently 
optimized in the inner CV loop of the nested CV, together with the regularization parameter 
alpha of the ridge regression. This resulted in only one distribution of prediction accuracy 
values calculated for the test set by the CV procedure for each specific pipeline with fixed 
atlas, SC weighting, subject sample, feature class and prediction target. These prediction 
results can then be compared between the pipelines, for example, between feature classes. 
We only ran such a feature optimization on the mixed-sex subject group. 
 

2.7 Prediction Brain Maps 
For the RCP feature class, we can assign a prediction performance to every brain region of a 
given parcellation. Indeed, each case of the feature selection from the RCP feature class 
corresponds to selecting and using one row of the SC matrix for prediction, i.e., the 
connectivity profile of one specific ROI (parcellated brain region) to the rest of the brain. Then 
the obtained prediction accuracy was assigned to all voxels of the selected region. For each 
parcellation we iterated through all ROIs and created the whole-brain prediction map of that 
parcellation. Such a mapping procedure was repeated for all considered parcellations, and 
the obtained prediction maps were averaged across parcellations. This was done separately 
for all traits, SC weightings and subject groups, which resulted in a total of 45 brain overlay 
maps reflecting the contribution of one or another group of voxels to the prediction of 
personality traits.  
 

2.8 Prediction of Cognition 
To obtain context to the results for the personality prediction, we additionally predicted a 
cognition variable provided with the HCP S1200 dataset. We chose the age-adjusted total 
composite score from the NIH Toolbox Cognitive Function Battery [41], which includes scores 



from picture vocabulary, reading, flanker, dimensional change card sort, picture sequence 
memory, list sorting and pattern comparison tests and comprises both fluid and crystallized 
cognition measures. For these experiments we only used the larger mixed-sex subject group. 
There was no significant correlation of the cognition score with age or sex across the 
considered subjects (rCognition-Sex = -0.014, rCognition-Age= -0.055). 
  



3 Results 
We applied a Ridge regression model to predict personality trait scores from features of the 
SC evaluating many different pipelines to 1) investigate the predictive relationship between 
personality and the structural connections of the brain and 2) the influence that different 
settings in the prediction pipeline have on the prediction accuracy. 
Below we first present a few examples of prediction results for varying the feature class and 
feature selection before giving an overview of the results from all different pipelines. Then we 
discuss the prediction brain maps illustrating how the connections from groups of voxels 
participate in prediction and, finally, evaluate and illustrate the influence of different pipeline 
parameters on prediction accuracy. 
 

3.1 Prediction Performance 

3.1.1 Personality Trait Prediction 
The prediction performance of personality traits from the DWI data is illustrated in Fig. 2 for a 
few examples of the feature class and feature selection. The shown results were obtained 
using the Desikan-Killiany atlas [43] with 70 ROIs, NOS weighting of the SC, the mixed sex 
subject group and the trait openness as target variable (see Methods). Overall, we can see 
that the prediction accuracy as given by the correlation between predicted and empirical 
openness scores does not on average reach values higher than ~0.19 for this set up and for 
all feature classes and feature selections considered. In particular, for the feature class PCA 
and varying the different number of PCs (Fig. 2A), a larger number of PCs (~20) must be used 
to obtain a positive prediction accuracy, which then stays approximately constant at ~0.1 when 
adding further PCs. For another feature class referred to as “corr” of the most correlated 
features (see Methods), the prediction accuracy reached plateaus of ~0.15 at around 40 of 
the most correlated SC edges (Fig. 2B). However, when considering the whole-brain feature 
class (Fig. 2C), which used all SC edges  leading to 2415 features in total including the edges 
of lower correlation, the accuracy was reduced to about ~0.1, which indicates that the plateau 
seen for the corr feature class (Fig. 2B) is expected to decrease again when more SC edges 
are added as features into the prediction process. Finally, the best accuracy of the considered 
setup was observed for the RCP feature class, when the connectivity profiles of individual 
brain regions to the rest of the brain were selected as features (Fig. 2D). For the RCP feature 
selection, the prediction accuracy depends substantially on the selected RCP, which can be 
observed by the strongly varied correlation values across brain regions. Nevertheless, the 
RCP features that may include SC edges with high and low correlations with the target score 
as compared with the corr feature class, have the potential to outperform the latter and other 
feature classes, when an appropriate RCP was chosen. An in-depth comparison of the 
different feature classes follows in Section 3.2.4. 
A second example is illustrated in Supplementary Fig. S2. The presented results were 
obtained using the Shen atlas [44] with 79 ROIs, the NOS weighting of the SC, the mixed sex 
subject group and the trait neuroticism. Compared to the first example, the parcellation and 
the trait were exchanged for another condition. Here, we see overall lower prediction 
accuracies. For the whole-brain, corr and PCA feature class, only negative correlations were 
obtained (Supplementary Fig. S2A-C). Solely for the RCP feature class some few RCPs led 
to positive correlations (Fig. S2D). The proportion of RCPs leading to positive values as well 



as the maximum achieved correlation lie below that found for the RCP feature class in the first 
example (Fig. 3D). 

 
Fig. 2 Examples of prediction results for all four feature classes. The calculations were performed by the 
pipeline with the Desikan-Killiany atlas (70 ROIs), NOS weighting, mixed-sex subject group, and the trait openness. 
The box plots show the distributions of the prediction accuracy as given by Pearson’s correlation between the 
predicted and empirical personality scores obtained for the test sets over 100 random splits of the data of the 5-
fold cross-validation. The prediction results are depicted for A the PCA feature class with different numbers of PCA 
components, B the corr feature class with different numbers of the most correlated features, C the whole-brain 
feature class and D the Regional Connectivity Profile (RCP) feature class for different brain regions, i.e., rows of 
the SC matrix. RCPs are sorted by the mean prediction accuracy. The respective conditions of the feature selection 
are indicated on the horizontal axes with the non-linear scaling in plots A and B.  
 
3.1.2 Distribution of all Prediction Results 
In this study we performed a large number of prediction calculations for 3,420 different 
pipelines reflecting combinatorial combinations of 19 atlases x 3 SC weightings x 3 subject 
groups x 4 feature classes x 5 target traits (see Methods). Every pipeline was executed several 
times using different conditions for the feature selection of a given feature class such as 
different numbers of PCs (PCA class) and the most correlated edges (corr class), and different 
brain regions (RCP class), see Fig. 2. By this, the total number of prediction results 
accumulated to 123,615, which were obtained by averaging over 100 random splits of the 
subjects into 5-fold CV. These average results therefore required a 100-fold amount of 
individual prediction runs consisting of a nested 5-fold CV loop used to tune the 
hyperparameter of the ridge regression and calculate the prediction accuracy on the test sets. 
 
To get an overview over the prediction performance of all evaluated pipelines, we illustrate the 
distribution of the average prediction accuracies from all conducted calculations in Fig. 3A. 
With only a few exceptions, the prediction results over all different settings yielded low 
correlations for the prediction of personality trait scores from the SC features. The mean of 
the overall distribution of the average prediction accuracies was around zero at r ≈ -0.003. 
Some very few prediction pipelines led to promising prediction accuracies of r > 0.2 (Fig. 3A, 



enlargement), which are in the range of values reported in the literature for prediction of 
personality traits from FC [6], [33], [45]. 
The grand collection of all prediction results in Fig. 3A can be split into subgroups to reveal if 
one or another case of the pipeline conditions may lead to different prediction performance 
than the others. For example, we may compare the prediction results for different personality 
traits and split the overall result distribution into 5 subgroups of specific traits, while the other 
pipeline conditions vary within every subgroup. The distribution histograms reflecting the 
prediction accuracy for the five personality traits are illustrated in the left plot in Fig. 3B. Here 
one can observe that, despite the overall low prediction performance, the highest prediction 
accuracies were achieved for the trait openness. The mean correlations of the different 
distributions all still remain close to zero with the highest mean correlation for the openness 
trait at r = 0.012, shifted slightly to the right. The effect size in terms of Cohen's d was small to 
medium when comparing the result distribution of openness to the other traits (dO-A = 0.28 
(Cohen’s d between the distributions for the openness (O) and agreeableness (A) trait), dO-C 

= 0.26, dO-E = 0.15, dO-N = 0.40). No notable differences in predictability could be observed 
among the other traits, as it is difficult to compare the overall very low effect sizes found for 
the other traits other than dE-N = 0.28. Furthermore, we observed a much larger proportion of 
the best prediction results with r > 0.2 for the openness than for the other traits (Fig. 3B right). 
We also found that especially good results can be reported for this trait in the female only 
subject group, but also in the mixed sex subject group which can be seen in Fig. 7. 

Fig. 3 Overview of all results on personality prediction by structural connectome. A Histogram showing the 
overall distribution of the prediction accuracy given by the mean correlation r between empirical and predicted 
personality traits obtained for the test sets and averaged across 100 random subject splits for cross-validation.  The 
prediction results are collected from all different pipelines with varying parcellation, SC weighting, subject group, 
personality trait, and feature class as well as all conditions of the feature selection. The latter includes different 
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numbers of PCA components (19 options), different numbers of the most correlated SC edges (19 options) and all 
RCPs (number of options depended on the granularity of the parcellation). The histogram in total contains 123,526 
average prediction accuracies. The selected and enlarged area of the histogram shows the cases of r > 0.2. B Left: 
Five overlaid histograms of the prediction results from plot (A) separated by the five different personality traits as 
indicated in the legend. Right: Number of occurrences of the different personality traits in the pipelines leading to 
prediction accuracies r > 0.2, marked by the red box in A. The traits are indicated on the horizontal axis. The trait 
abbreviations are as follows O: Openness, C: Conscientiousness, E: Extraversion, A: Agreeableness, N: 
Neuroticism. 

3.1.2 Cognition Prediction 
To provide an additional context for the prediction results of personality traits illustrated in Fig. 
3, we also considered a cognition score from the HCP dataset as another prediction target. 
We therefore calculated the prediction accuracy for this score for the mixed-sex subject group, 
and varied brain parcellation, SC weighting and feature class. The obtained correlation 
distribution for the whole-brain feature class is depicted in Fig. 4A together with that of all five 
personality traits for the same conditions of the prediction pipeline. We chose the whole-brain 
feature class since this doesn’t have the additional variable of the feature selection, i.e., 
different RCPs or different numbers of PCA and corr features, which facilitates the 
comparison. For completeness, Fig. 4B shows prediction accuracies for all feature classes 
and their evaluated feature selection options for the prediction of cognition. One can see that 
predicting cognition led to slightly higher values of the prediction accuracies than predicting 
personality trait scores did (Fig. 4A). Interestingly, the mean of the accuracy distribution for 
cognition prediction lies at about r = 0.15, whereas the prediction accuracy for personality 
traits is distributed around r = 0.02 for the pipelines considered in Fig. 4A. The difference 
between the two distributions shows a very high effect size (Cohen’s d) of 2.06. Furthermore, 
the highest obtained correlation for cognition was r = 0.28, while it was r = 0.21 for openness, 
r = 0.23 for conscientiousness, r = 0.19 for extraversion, r = 0.20 for agreeableness, and r = 
0.21 for neuroticism. This demonstrates that the used prediction pipeline and DWI data can in 
fact lead to reasonable prediction results for cognition, where the accuracy distribution was 
clearly shifted to positive values (Fig. 4A). This was however not the case for predicting 
personality traits (Fig. 3 and Fig. 4A), where the overall and the best-case correlations were 
smaller than those for cognition.  
 

 
Fig. 4 Results for the prediction of cognition. A Comparing the prediction results for personality traits and 
cognition. The distributions of the prediction accuracy (correlation) for cognition and all five personality traits are 
shown as indicated in the legend. In both cases the same prediction pipeline and DWI data were used of the mixed 
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sex group (n=426), the entire SC (whole-brain feature class) and varied parcellations and connectome 
weightings. B The prediction accuracy of all evaluated prediction pipelines for cognition. Compared to (A) this 
distribution includes results for all four feature classes (instead of only the whole-brain feature class) and all of the 
evaluated feature selection options. 

3.2 Prediction Brain Maps 
In addition to evaluating the prediction accuracy, we are interested in exploring which brain 
regions actively participated in personality prediction. We address this question for the 
prediction results obtained from the pipelines using the RCP feature class. For this, we 
calculated the prediction brain maps of the mean prediction accuracy averaged over all 
considered parcellations as described in Section 2.7 in Methods. 
Fig. 5 shows exemplary maps for different traits and different SC weightings. Voxels colored 
in red show that, across all parcellations, this voxel belonged to a ROI which’s RCP led to on 
average a positive test set correlation. The ‘stronger’ this red color is, the higher the positive 
test set correlation. Voxels colored in blue indicate that, on average across all parcellations, 
these voxels belonged to ROIs which’s connections to all other parts of the brain led to a 
negative test set correlation. I.e. no generalizable connection between the RCP and the 
personality trait score was found. The stronger the blue color, the more negative the test set 
correlation was. We do want to clarify that one cannot say that a stronger negative average 
correlation corresponds to a ‘worse’ prediction than a slightly negative average correlation. 
Correlations r <= 0 indicate an unsuccessful prediction but it is unclear how negative prediction 
accuracies relate to each other. 
We found that predicting the five different target traits was associated with different prediction 
brain maps as illustrated in Fig. 5A for the NOS weighting and mixed sex subject group. In 
particular, the map for openness stands out as it indicates that, especially for the left 
hemisphere, RCPs from almost all regions of the brain actively participated in the prediction 
of this trait and delivered positive prediction accuracy across different parcellations. This may 
be compared with the conscientiousness map exhibiting a uniformly low average correlation 
(low color intensity in Fig. 5A, middle), which makes it difficult to select any brain areas clearly 
associated with this trait. On the other hand, the well-pronounced landscapes of high and low 
average prediction accuracies in the maps for extraversion, agreeableness and neuroticism 
can help to distinguish brain regions whose connections are important for predicting the 
respective trait (Fig. 5A). 
 
The discussed prediction brain maps can also be calculated for the three SC weightings as 
illustrated in Fig. 5B for the mixed sex subject group and the trait neuroticism. Here we also 
observe that different SC weightings can be associated with different brain maps. In particular, 
the NOS weights were accompanied by a distinct landscape of the brain map as compared to 
those of MA and FA weightings (Fig. 5B). For the NOS weighting, one can clearly distinguish 
the brain areas positively contributing to the personality prediction from those with a little or 
even negative impact on the prediction performance (Fig. 5B, red and blue domains). The 
other two SC weightings based on FA and MD led to less contrasted prediction brain maps 
that are rather similar to each other, but distinct from the NOS case, which we consider in 
more detail later below. 
 
It must be noted that the maximal mean correlations observed in the maps are low at r = 0.12 
when comparing traits and r = 0.08 when comparing weightings. Nevertheless, the obtained 
brain maps can be compared to baseline maps of ‘random prediction’ (Supplementary Fig. 



S3), where we additionally ran permutation tests for the RCP feature class.  There, we again 
performed 100 repetitions of a nested 5-fold CV for the same pipelines, but the target values 
were randomly shuffled between subjects. The baseline maps for the different traits show a 
mean correlation across parcellations close to zero for the entire brain (Supplementary Fig. 
S3). Therefore, it can be reported that distinct brain maps arise for the different prediction 
targets and connectome weightings marking RCPs which lead to positive or negative 
prediction accuracies across all 19 parcellations. This shows that it depends on the prediction 
target and the considered weighting which RCPs can predict the personality target more or 
less accurately, i.e. which brain areas and their connections might be more or less related with 
the trait of interest. 

 
Fig. 5 Prediction brain maps associated with the performance of personality prediction from DWI data. The 
prediction accuracy (correlation) of the RCP feature class was assigned to all voxels of the respective brain regions 
and averaged over all considered parcellations for fixed other conditions of the prediction pipeline (see Methods). 
The brain maps are illustrated for A the five different personality traits indicated in the plots as prediction targets 
obtained for the mixed sex subject group and the NOS SC weighting, and B the three different SC weightings 
indicated in the plots obtained for the mixed sex subject group and the personality trait neuroticism. The average 
correlation is depicted by colors with the scaling indicated in the color bars. Left and right hemispheres are shown 
from the lateral view. Abbreviations are NOS: the number of streamlines, MD: the mean diffusivity, and FA: the 
fractional anisotropy. The visualization of the maps was created using the neuromaps toolbox [46] including the 
volume-to-surface transformations as proposed and defined in [47], [48]. 
 

3.3 Influence of Different Pipeline Settings 
 
3.3.1 Parcellation 
We observed no clear trend towards a superiority of certain brain parcellations for personality 
prediction. There seems to be a slight tendency towards an advantage of a finer granularity 
(more brain regions) within the same parcellation scheme, for example, when the best 
prediction results were selected from the RCP feature class (Supplementary Fig. S4). A similar 
trend can be observed when considering pipelines leading to correlations r > 0.2 for the 
prediction of cognition. Here, parcellations with higher granularities more often lead such 
results than coarser parcellations (Supplementary Fig. S5B). When considering all different 
pipelines, it however depends on the combination of the individual settings of the pipeline 
conditions which brain parcellation performs best. 
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3.3.2 Connectome Weighting 
We also did not clearly observe an overall best connectome weighting for the prediction of 
personality traits. The prediction performance of the weighting depends on the other settings, 
such as the parcellation scheme, the trait or the feature class. For predicting cognition, we can 
however see a quite clear difference between the different SC weightings. NOS performs 
better than FA which in turn performs better than MD (Supplementary Fig. S6). Furthermore, 
among the best prediction results, characterized by an average prediction accuracy of r > 0.2, 
NOS is the weighting occurring most frequently for both cognition and personality traits. In 
particular, ~69.5% and 76% of the best pipelines leading to prediction accuracies of r > 0.2 
used NOS as SC weighting for the prediction of cognition and personality traits, respectively 
(Fig. 6A). 
 
The properties of SC weightings and their impact on the prediction results can also be 
compared based on the prediction brain maps calculated for the RCP feature class by 
averaging across all considered parcellations (Fig. 5B). We calculated the correlations 
between any of these two maps, which was repeated for all combinations of different 
personality traits and subject groups to obtain distributions of the correlations (Fig. 6, right). 
One can see a high similarity (correlation) between the cortical maps from the MD and FA 
weighting, whereas the brain maps of both microstructural DWI weightings exhibit distinct 
patterns as compared with that of the NOS weighting, which is reflected by a low correlation 
of NOS maps with both MD and FA maps. Considering that the meaning of more or less 
negative correlations is unclear but is given a meaning by correlating the maps of different 
weightings, we further correlated the maps after setting all voxels with r < 0 to zero and only 
considering voxels with r > 0 for all three weightings. While these configurations might in turn 
have other drawbacks, the stronger similarity between maps of MD and FA weighting and the 
more distinct pattern of the NOS map were confirmed for all three setups. This also holds for 
individual parcellations for both personality traits and cognition (Supplementary Fig. S7B and 
C). Analogous similarity patterns can also be observed when calculating the correlation 
between the differently weighted normalized SCs for all subjects selected for the study 
(Supplementary Fig. S7A). Correlations between the FA- and MD-weighted SCs are close to 
1 whereas correlations between NOS-weighted connectomes and the others are significantly 
lower for all parcellations except for the parcellation with the coarsest granularity (MIST 31) 
(Supplementary Fig. S7A). 
 
We also compared the prediction results obtained for the NOS-weighted connectomes with 
those based on the SIFT2-weighted version, which is supposed to more accurately represent 
the density of structural connections [32]. Nevertheless, we observed only a very marginal 
improvement of prediction results when using the SIFT2-weighted connectomes for 
personality prediction performed for the mixed-sex subject group and varying conditions of the 
feature class, parcellation and all five personality traits (Supplementary Fig. S8). While the 
difference between the two distributions of the prediction accuracy is statistically significant 
with p << 0.001 (two-sided t-test), the effect size in terms of Cohen’s d values is very small at 
d = 0.072. 
 



Fig. 6 Impact of connectome weighting on prediction of personality and cognition. A Fraction of the 
predictions results with the prediction accuracy r > 0.2 broken down by the different connectome weightings as 
indicated in the legend for both the prediction of personality and cognition as denoted on the horizontal axis. B 
Comparison of the prediction brain maps obtained for different connectome weightings and the RCP feature class, 
see Fig. 5B. The maps for different weightings were compared by correlation across voxels  for all five personality 
traits and all three subject groups, so that the boxes in the graph on the right each represent a distribution of 15 
different correlation values. Abbreviations are NOS: the number of streamlines, MD: the mean diffusivity, and FA: 
the fractional anisotropy. The example maps on the left show maps for the trait neuroticism and the mixed-sex 
subject group. 

3.3.2 Subject Group 
In this study three different subject groups of males, females and mixed-sex subjects were 
considered as one of the pipeline conditions. We observed some differences in terms of 
prediction accuracies between these subject groups, which were however not consistent 
across different pipeline settings such as different SC weightings and different traits. Fig. 7 
shows prediction accuracies from the pipelines using the whole-brain feature class for the 
different subject groups across the five different traits for the NOS weighting (Fig. 7A), the MD 
weighting (Fig. 7B) and the FA weighting (Fig. 7C). For the NOS weighting the female subject 
group performs a lot better than the mixed-sex and male group for the openness trait. This is 
however not the case for openness using the MD or FA weighting. For most other traits, there 
is no improvement when separating the subjects by sex or even a deterioration such as for 
the trait agreeableness for all three SC weightings. As the prediction accuracies and their 
differences were overall low, it is little conclusive whether the differences between subject 
groups arise from distinct brain-personality relationships in males and females or simply from 
the fact that these groups were composed of different subjects independently of subject sex. 
Further investigations would be necessary to ensure there is a difference if a more stable SC-
personality connection could be established. 

 
Fig. 7 Impact of different subject groups on the prediction results. The plots include results from the whole-
brain feature class and all different parcellations for A the NOS weighting, B the MD weighting and C the FA 
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weighting. In each plot the results are separated by trait as indicated on the x-axis and the different subject groups 
are indicated in the legend - all: mixed-sex, f: females, m: males. 

3.3.4 Feature Classes 
An important pipeline condition that can influence the prediction performance is the employed 
feature class. The prediction results obtained for different feature classes were compared in 
this study in two different ways, see Section 2.7 in Methods. According to the first approach, 
we calculated the prediction accuracies on the test set for all considered cases of pipeline 
conditions and feature selections. Then the best prediction results were selected for each of 
the feature classes across the feature selection instances, i.e. the best number of most 
correlated features, the best RCP and the best number of PCs. In Fig. 2A, B and D, for 
example only the distribution with the highest mean value is chosen for each feature class 
respectively such that they can be compared with each other and the distribution of Fig. 2C 
for the whole-brain feature class. This procedure was repeated for each combination of other 
pipeline settings. In this comparison, the RCP feature class outperformed the other feature 
classes in almost all prediction pipelines including all personality traits, see Fig. 8A. In addition 
to the mixed-sex subject group illustrated in Fig. 8A, we verified and confirmed this conclusion 
for the female only and male only subject groups. Furthermore, we also found that the majority 
(over 50%) of the results with prediction accuracies r > 0.2 collected over all cases and 
conditions of the pipelines were obtained from the RCP feature class. Interestingly, a different 
picture was observed for the prediction of cognition, where almost 60% of all best results were 
obtained from the PCA feature class. This is visualized in the Sankey plots in the 
Supplementary Fig. S5 which shows the distribution of promising results (r > 0.2) over the 
different pipeline conditions. 
Overall, for all different pipeline conditions, there were only a few RCPs that lead to the 
promising results (Fig. 2D) meaning that only a few connectivity profiles in the SC have a 
stronger relationship with the trait of interest, while the other connectivity profiles in the SC 
have little association with the personality scores. Furthermore, the predictive RCPs differ 
between different SC weightings and between the different personality traits as can be seen 
in Fig. 5. 
The above comparison, obtained by selecting the best prediction accuracy out of many others 
after the CV loops, i.e. based on the test set correlation, may serve as an idealistic upper 
boundary of prediction performance. As a more sophisticated approach, we ran an additional 
prediction analysis, where the issue of the optimal feature selection was resolved within the 
inner CV loop, see Methods. In more detail, we included the selection of the optimal RCP, 
number of PCs and number of most correlated features as an additional hyperparameter to 
be optimized together with the regularization hyperparameter of the ridge regression in the 
inner loop of the 5-fold nested CV. The obtained results are illustrated in Fig. 8B for the mixed-
sex subject group, where we observe a drop of the prediction accuracies for almost all 
illustrated cases, especially for the RCP feature class. With this comparison approach, there 
is no clear difference between the prediction performances of different feature classes (Fig. 
8B). 
 



Fig. 8 Comparing the performance of different feature classes for personality prediction from DWI data.   A 
Comparing the best prediction results for different feature classes as indicated in the legend and the five traits 
indicated on the horizontal axis (O – Openness, C – Conscientiousness, E – Extraversion, A – Agreeableness, N 
– Neuroticism). Boxplots depict the distributions of the prediction accuracies calculated for 100 random data splits 
for CV loops and collected over all considered parcellations, all SC weights and the mixed-sex subject group. For 
every pipeline condition (fixed trait, weighting, parcellation and subject group) the best result was selected across 
all feature selection instances of the respective feature class (RPC, number of PCs and most correlated SC edges). 
B Data presentation as in plot A. Here, the optimal feature selection instances for the different feature classes were 
however determined as a hyperparameter in the inner loop of the nested CV (see text for details). 

  

A B



4 Discussion 
 

4.1 Personality Trait Prediction 
In the current study, we predicted the big five personality trait scores from the SC derived from 
dwMRI data of unrelated subjects from the HCP young adult dataset. We systematically 
evaluated the effect of different pipeline settings on the prediction performance including 19 
cortical brain parcellations, three SC weightings, three subject groups and four feature 
classes. For the largest of the three subject groups (mixed-sex), we ran additional analysis for 
the prediction of a cognition target and for an extension of the NOS weighting – the SIFT2 
weighted connectome. 
Overall, we find only a few cases of promising prediction performance (correlation r > 0.2) 
which are similar to values reported in the literature for personality prediction from the resting 
state FC ([6], [33], [45], [49]). Most results, however, are centered around a correlation of zero 
with the mean at r ≈ -0.003 (Fig. 3A) indicating no generalizable predictive relationship 
between personality traits and SC for the pipelines and data evaluated here. Considering 
these already very low correlations we did not further investigate the effect of potential 
confounds apart from sex. The effect of sex was investigated independently by considering 
both a mixed-sex group and subject groups separated by sex. Nevertheless, it cannot be ruled 
out that other confounds such as in scanner head movement [50] or age (despite the small 
range from 22-35 years) inflated the results. This would however further strengthen the already 
observed null-findings.   
 
While earlier studies relating dwMRI features to personality focused on TBSS and correlation 
analysis, the inconsistent results obtained in different analyses well support our findings. 
Nevertheless, for a more direct comparison we also conducted a TBSS analysis for the data 
considered here. The exact method and results can be found in the supplementary. Overall, 
our findings for TBSS are in line with our prediction results: For most traits, there are no 
significant TBSS-based correlation results, and the few significant findings have low 
correlations with |r| < 0.21.  Prior research based on TBSS that found significant correlations 
between voxel clusters and personality, in many cases reported correlations r ≤ 0.3. Only one 
approach by Xu and Potenza [12] found very strong relationships between WM microstructural 
properties and personality with r’s up to 0.75 using the TBSS analysis on a small sample size 
of N = 56. [12]. A study by Ooi et al. [51] predicted different aspects of behavior as determined 
by a factor analysis from many behavioral scores from the SC with different weighting. The 
factors of emotion and dissatisfaction in the HCP dataset, as well as the personality factor in 
the ABCD dataset [52], were predicted with correlations r < 0.1 for all weightings; this again is 
in line with the low correlations we obtained for the prediction of personality traits. Although 
predictions from the FC showed better results than our findings for  the SC, the correlation in 
these cases was still limited to values below r = 0.29 ([6], [45], [49]). The only exception is the 
study by Nostro et al. [33] that found correlations up to r = 0.42 for predicting traits from certain 
functional brain networks.  The approach by Dubois et al. [45] provided prediction accuracies 
for different setups and also reported negative / unsuccessful prediction accuracies for some 
setups for all traits except openness. This work therefore found the trait openness to be 
predicted best and most reliably from the FC, just as we did here for the SC (Fig. 3B). 
Considering results for brain structural measures, a review and meta-analysis by Chen et al. 



[53] systematically evaluated research relating personality traits to brain structure, and their 
meta-analysis showed no replicable results for gray matter volume (GMV), cortical thickness 
and surface area. 
All in all, despite some promising results for certain modalities, the prediction of the big five 
personality traits from brain imaging data remains to be a challenging task. This is underlined 
by the results of our study, showing that no generalizable and clear predictive relationship 
between the SC and the big five personality trait scores can be found so far. 
 
4.1.1 Comparison with the Prediction of Cognition 
To further investigate why no strong relationship between personality and the structural 
connections of the brain could be found, we additionally predicted a cognition score from the 
SC for the mixed sex group as a comparison. Here, we found improved performance both in 
terms of the best performing pipelines and the average prediction accuracy compared to the 
prediction of personality (Fig. 4). The improved, but still limited prediction of the cognition 
target indicates that the results for the personality prediction might be influenced by both 
inherent limitations of the standard SC as well as reliability issues of the self-reported 
evaluation of personality scores themselves, which has been shown to limit brain-behavior 
predictions [54]. Additionally, the big five personality traits represent a model of personality, 
and it remains unclear how close they come to actual true factors of personality and how these 
could ideally be measured. We therefore expect that further advances in both dwMRI / SC 
extraction and reliable estimations of the personality trait scores are necessary to find a 
potential connection between our personality and the structural connections of our brain. In 
addition, large sample sizes, enabling the use of more complex, non-linear models such as 
graph neural networks [55] might offer new opportunities to relate structural brain connectivity 
to personality. 
Related literature on prediction of cognition from SC or FC shows diverse results, some of 
them in line with what we find here. Research by Ooi et al. [51] and Yeung et al. [28] find 
similar correlation values for the prediction of cognition from the SC. Work by Feng et al. [27] 
also show a large range of possible prediction accuracies for different pipelines, the maximally 
reached values are however higher than in our findings (r up to 0.50). Reported accuracies for 
the prediction from the FC are mostly higher compared to those from the SC ([56], [51], [57], 
Zhu), the range of reported correlations however still strongly varies in r = [0, 0.77]. In contrast 
an approach by Litwińczuk et al. finds target for which the SC performs better than the FC for 
prediction (executive function, language) [58]. These results show the improved prediction of 
cognition targets compared to personality and the general applicability of the SC for cognition 
prediction across literature. The diverse results again highlight how different data, pipelines 
and targets, as well as the presentation of results, can influence the prediction and complicate 
comparability of results. 
 
4.1.2 Prediction Brain Maps 
Using the results from the RCP feature class pipelines, we generated cortical maps of average 
‘local’ prediction accuracy across all 19 parcellations. These maps showed distinct pictures of 
which RCPs contributed positively to the personality trait prediction for the five different traits. 
They also indicated a unique role of the different SC weightings to the prediction. Considering 
the overall very low prediction accuracies, we may not thoroughly interpret the RCPs leading 
to promising results for the different personality traits. We however highlight the potential of 
such maps to identify regions whose connections to other parts of the brain may have a strong 
link to the trait / target of interest. We expect that the connections of local voxel clusters that 



belong to RCPs leading to superior prediction results for many different parcellations are more 
strongly linked to the target. Such maps might therefore help to determine connections or 
regions of interest for further studies focusing on a connection between the brain SC and 
behavior. 
 
4.1.3 Prediction Model 
In this study we applied a ridge regression model to prediction. There is different evidence 
concerning the effect of the prediction algorithm on the effect size of the prediction. Both 
Yeung et al. [28] and Schulz et al. [42] reported comparable results between classical linear 
ML models such as ridge regression or elastic net and non-linear deep learning models for 
predicting different behavioral phenotypes from the SC and FC respectively. Further, a work 
by Cui et al. [59] compared six regression algorithms for the prediction of behavioral variables 
from features of the rsFC. Of the six evaluated algorithms, four, including ridge regression, 
presented a similarly strong performance outperforming the other two algorithms. Of the four 
superior algorithms, ridge regression had the lowest computational burden. On the other hand, 
Feng et al. [27] found advanced prediction accuracy using a DL model over classical ML 
models for the prediction of age and cognition targets from the SC while still observing a 
comparably strong signal for prediction using the classical ML models. The simple linear ridge 
regression model was chosen based on these findings and the computational burden of the 
different prediction models. The comparably low computational load of the ridge regression 
enabled the comparison of many different other pipeline parameters as we did in this study. 
In addition, findings from literature comparing different algorithms suggest that the low 
prediction accuracy found here for prediction of personality are most likely not due to the 
selected prediction algorithm. 
 

4.2 Influence of Different Pipeline Conditions 
Despite the observed overall low prediction accuracy we still identified differences in prediction 
results between distinct pipeline settings. 

4.2.1 Brain Parcellations 

There was no clear best brain parcellation for personality prediction. While there was a slight 
tendency towards prediction improvement with higher granularity within the same parcellation 
scheme, differences were not large enough to give a clear recommendation. It is also 
important to add that while we investigated a large number of brain parcellations, the highest 
granularity we used was 210 ROIs and there are significantly finer brain parcellations available 
(e.g. Schaefer parcellation with up 1000 ROIs [60]). Considering the inherent limitations of 
diffusion tractography [61] and the lower resolution of diffusion MRI compared to other MRI 
modalities, the tendency towards an improvement with higher granularity might saturate or 
reverse at some point when continuously increasing granularity possibly leading to an optimal 
granularity, at least for given recording and data preprocessing settings. 
Investigations by Feng et al. [27] for prediction of cognition from the SC showed improved 
performance of the Human Brainnetome Atlas with 246 ROIs [62] compared to the Automated 
Anatomic Labeling with 90 ROIs [63] across two datasets and several cognition traits. Both of 
these parcellations were also evaluated in this work and the improved performance of the 
Brainnetome atlas was confirmed for the prediction of cognition for all three SC weightings. 
This however didn’t hold for most configurations when predicting personality traits, showing 



an influence of the target. This is in line with research conducted by Zhang et al. [64] for 
predicting different behavioral measures from the SC. They found improvement of prediction 
performance for a higher granularity parcellation only for some of the traits. Dhamala et al. 
[56] predict cognition from both SC and FC for a parcellation with 86 ROIs (combination of the 
Desikan-Killiany atlas [43] and additional subcortical structures [65])  and an in-house 
parcellation with 439 ROIs. While the prediction performance improves with a higher 
granularity for the FC, this does not hold for the SC for which performance doesn’t improve or 
even deteriorates. This might affirm our assumption that at a certain point higher granularity 
does not further improve prediction accuracy for the SC. 
 
4.2.2 SC Weightings 
For predicting personality, there was no global best SC weighting. However, when only 
considering the pipelines leading to prediction accuracies r > 0.2, the NOS weighting was used 
in a vast majority of cases (76%, Fig. 6A). For the cognition target one could see a clear 
ranking of SC weightings (NOS > FA > MD) (Supplementary Fig.S5). This is consistent with 
the study of Yeung et al. [28]. They also found that generally the best results for prediction of 
sex, age, general cognition, and mental health from the SC were achieved for the NOS 
weighting. For predicting the general cognition factor with the BrainNetCNN, they also found 
a similar ranking of the SC weightings: rMD = 0.138, rFA = 0.168 and rNOS = 0.201). Also studies 
by Liu et al. [66] and Zhang et al. [64] predicting continuous behavioral phenotypes from SCs, 
found improved or equal performance of the NOS weighting compared to the microstructural 
weightings MD and FA. A study by Ooi et al. [51] on the other hand found no consistent best 
weighting when predicting several behavioral targets in two large scale datasets, which 
demonstrates the difficulty of comparing different weightings when other pipeline conditions 
are set differently between studies. 
Considering that for different weightings, different RCPs are predictive of a certain personality 
trait (Fig. 5B), it might be valuable to combine different weightings for the prediction. The 
higher similarity between the two maps of MD and FA compared to the more distinct pattern 
for the NOS map (Fig. 6B) is most likely due to the fact that MD and FA are both calculated 
from the eigenvalues of the diffusion tensor and are related by definition [5], while the NOS 
weighting represents a completely different form of weighting. Taking this into consideration it 
might be worthwhile to only consider one DTI-based microstructural weighting and combine it 
with the NOS weighting to enhance information capacity and improve prediction performance. 
 
4.2.3 SIFT2 Refinement 
We furthermore investigated applying the SIFT2 algorithm [32] to the NOS-weighted 
connectomes to compare predictive performance for the mixed-sex subject group and found 
a very slight improvement of the prediction accuracy when applying the SIFT2 weighting 
(Supplementary Fig. S8). The additional post-processing, i.e. weight calculation for each 
reconstructed streamline, that is necessary for the SIFT2 weighted SC, increases the time that 
is necessary to construct the SC from the dwMRI data by 28-48% per subject [32]. It therefore 
depends on available resources if additional refinement, which only showed very slight 
improvement for the prediction compared to the NOS weighting, should be applied. One 
possible explanation for the observed slight improvement after applying the SIFT2 weighting 
is that the NOS- and SIFT2-weighted SCs are still very strongly correlated. Even though the 
mean relative change across all subjects can reach values of up to 67% for certain 
connections, the mean Pearson’s correlation across all subjects and parcellations between 
NOS- and SIFT2-weighted connectome lies at r = 0.99 (Supplementary Fig. S9). This means 



that despite quite high relative changes for some connections between SIFT2 and NOS, the 
connectivity patterns seem to mostly be retained for the two weightings. 
 
4.2.4 Subject Groups 
A review and meta-analysis by Chen et al. [53] investigating research on brain structure -  
personality associations found that for each trait, there was at least one study that found sex 
differences in the association between personality and regional gray matter volume (GMV). 
However, for all the traits there was more research that examined the role of sex on the 
personality – brain structure relationship and found no influence of sex showing that there are 
overall mixed findings with the majority not showing any sex-depended associations.  
Here, we did find differences in performance between the different groups (mixed-sex, only 
male and inly female) (Fig. 7). However, there was no clear pattern and, considering the 
overall low correlations and relatively small sample size, it is hard to claim if there was an 
influence of sex on the relationship between brain structure and personality or if differences 
only arrived due to a different group of subjects independent of their sex. This would require 
additional investigations. 
Considering the FC, not many studies investigated the role of sex on the prediction or 
relationship with personality traits. A study by Nostro et al. [33] found that additional functional 
networks predicted extraversion, neuroticism and openness when separating subjects by sex 
in comparison to a mixed sex subject group. Specifically, they e.g. found that openness was 
significantly better predicted in women compared with men for the reward network. This is 
similar to one of our findings that openness is the only trait for which we see an improvement 
for the female group when separating subjects by sex (Fig. 7). This however only hold for the 
NOS weighting. 
 
4.2.5 Feature Classes 
Among all considered feature classes, the RCP class led to the most promising prediction 
performances for the personality traits (Fig. 8A).  It is however not clear how well these RCP 
results generalize to other datasets. In particular, the beneficial impact of the RCP feature 
class on the prediction performance disappeared, when the feature selection process was 
optimized under the nested CV loop (Fig. 8B). This might however be connected with a 
relatively small sample size considered in this study, and further investigations of this issue 
are necessary. In general, this finding highlights the importance of out of sample prediction 
and proper assessment of the generalizability of predictive pipelines. When evaluating many 
different pipelines, it needs to be ensured that the best performing pipelines generalize well to 
new data. In addition, giving an overview over the results from all evaluated pipelines gives 
the reader a chance to assess how difficult it is to predict the target in general. 
As mentioned above for the connectome weightings, only a few RCPs led to relatively high 
positive correlations between predicted and empirical personality trait scores (Fig. 2D). This 
may indicate that the relationship between brain structural connections and personality, to the 
extent that could be found here, is localized in certain connections. Single RCPs would lead 
to better prediction results than using the entire SC for almost all pipelines (Fig. 8Fig. 8A). In 
contrast to the personality traits, the PCA feature class led to the best results for the prediction 
of cognition. Here, compared to the personality traits, it also worked better to use the whole 
brain feature class (Supplementary Fig. S5B). Interestingly, for both the cognition and 
personality targets the corr feature class did not show a particularly strong performance 
(Supplementary Fig. S5). In comparable literature for prediction of behavior from the FC and 



SC this type of feature selection is used quite commonly through the application of the 
connectome based predictive modeling [67]. Despite promising prediction performance of 
these approaches (see e.g. [6], [68], [69]), considering the results here, it might be worthwhile 
to investigate other feature classes as well. 
 

4.3 Importance of Result Presentation 
Publication bias led to positive and significant findings being reported and published more 
frequently than null-findings or non-significant results in the past [70], [71]. An overly optimistic 
picture might therefore be established in the literature for certain prediction investigations 
when several analyses were performed and only significant or the best results were reported 
to enhance chances of the work being published. Presenting all the obtained prediction 
accuracies gives the reader a chance to assess the prediction performance that can be 
expected when randomly selecting a pipeline from the set of evaluated conditions. Considering 
the entire spectrum of the obtained results can further give a good impression on how easy or 
difficult it is to predict a certain target from the features of interest in general. The best results 
achieved by some of the pipelines evaluated here, are in line with other results found in the 
literature. However, not presenting the vast amount of unsuccessful predictions, illustrated in 
Fig. 3A, would leave the reader with an unrealistically good impression for the prediction of 
personality from the SC. Our results further show that despite using a CV prediction method 
to assess an out-of-sample performance, overfitting, in this case to the test set, can still occur. 
Fig. 8 clearly shows that selecting the best RCP on an independent set in the inner loop of the 
nested CV leads to significantly worse results than selecting it post-hoc based on the 
calculated test set accuracies. Here, this presentation of overfitting confirms and strengthens 
the assumptions of null-findings for the SC-personality relationship. This also demonstrates 
the importance of verifying selected ‘good’ pipeline conditions for prediction either by having 
them determined in the inner loop of the CV or by applying the successful pipelines to 
completely unseen data.  
Independent of the exact targets and features used for prediction, our results show how 
strongly cherry-picking results obtained from several analyses might influence the perceived 
prediction performance and further highlight the importance of reporting all performed 
analyses and testing for potential overfitting. 
  



5 Summary 
 
In the present study, we systematically evaluated different pipeline conditions for the prediction 
of the big five personality trait scores from the SC. Despite the large variability in pipelines, we 
found no linear generalizable relationship between personality trait scores and the structural 
connectome derived from dwMRI data. Only a few pipelines could be found that lead to 
promising results while still of low correlations between empirical and predicted scores. 
Considering the vast majority of unsuccessful predictions and the comparably small sample 
sizes, we do not expect the more successful setups of the prediction pipelines to generalize 
well to new unseen data. Comparisons with the results for prediction of a cognition target 
indicate that there might be limitations considering the reliability of the personality target as 
well as the reliability of current tractography and SC reconstruction algorithms. We expect that 
larger advances in the reliability of both trait scores and dwMRI / SC calculation as well as 
larger samples will be necessary to uncover a potential connection between the structural 
connection of the brain and personality traits. Overall, it became apparent that all different 
design choices we evaluated in the process of calculating the SC and predicting a behavioral 
target from it influenced the prediction outcome. Apart from comparing obtained prediction 
accuracies for different combinations of pipeline conditions, we calculated and compared 
prediction brain maps of local prediction accuracy. We found distinct prediction brain maps for 
different personality trait scores and highlighted the potential of such maps to determine 
regions whose connections to the rest of the brain resemble good features for predicting a 
certain target trait. Distinct maps could also be found for different connectome weightings. 
While the maps of the two microstructural weightings were quite similar, the map of the NOS 
weighting showed a distinct pattern.  Even though the NOS weighting outperformed 
microstructural properties as SC weighting for both the cognition and personality variables, it 
might be beneficial to combine the NOS weighting with a microstructural weighting for 
enhanced information capacity and possibly better prediction.  
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Supplementary Materials 
 

 
Figure S1 Supplementary information on the personality trait scores. Only scores of subjects used in the 
analysis were used for the preparation of the figures.  A The distribution of the big five personality trait scores as 
obtained through the NEO-FFI questionnaire. B The correlation between the different trait scores (O - Openness, 
C - Conscientiousness, E - Extraversion, A - Agreeableness, N - Neuroticism) C Comparison of trait distributions 
between males and females. For traits marked with an asterisk, the difference between the distributions of male 
and female trait scores was statistically significant with p < 0.05. 
 

 
Fig. S2 Examples of prediction results for all four feature classes. The calculations were performed by the 
pipeline with the Shen atlas (79 ROIs), NOS weighting, mixed-sex subject group, and the trait neuroticism. The  box 
plots show the distributions of the prediction accuracy as given by Pearson’s correlation between the predicted and 
empirical personality scores obtained for the test sets over 100 random splits of the data of the 5-fold cross-
validation. The prediction results are depicted for A the PCA feature class with different numbers of PCA 
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components, B the corr  feature class with different numbers of the most correlated features, C  the whole-brain 
feature class and D the Regional Connectivity Profile (RCP) feature class for different brain regions, i.e., rows of 
the SC matrix. RCPs are sorted by the mean prediction accuracy. The respective conditions of the feature selection 
are indicated on the horizontal axes with the non-linear scaling in plots A and B.  
 
 
 

 
Figure S3 Prediction brain maps for permutation test predictions. The prediction accuracy (correlation) of the 
RCP feature class was assigned to all voxels of the respective brain regions and averaged over all considered 
parcellations for fixed other conditions of the prediction pipeline (see Methods). The brain maps are illustrated for 
the five different personality traits indicated in the plots as prediction targets obtained for the mixed sex subject 
group and the NOS SC weighting for randomly permuted target values. The visualization of the maps was created 
using the neuromaps toolbox [1] including the volume-to-surface transformations as proposed and defined in [2], 
[3]. 
 
 

 
Figure S4 Comparison of brain parcellation granularity. The figure compares the distributions of the maximum 
prediction correlations from pipelines using the RCP feature class for brain parcellations with the same parcellation 
scheme at different granularities. The distributions contain results from all personality traits and all connectome 
weightings. 
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Figure S5 Sankey graphs of the best pipelines leading to test set correlations r > 0.2. On the left are the 
different parcellation schemes, followed by the three different SC weightings and then the feature selection 
methods and the different feature selections / representations. The larger a node, the more often it was part of a 
pipeline leading to a test set correlation >= 0.2. Diagram created using SankeyMATIC. A For personality trait scores 
(O: Openness, C: Conscientiousness, E: Extraversion, A: Agreeableness, N: Neuroticism). B For the cognition 
target. 

Figure S6 Distribution of mean test set correlations for the prediction of cognition separated by connectome 



weighting. Effect size between the distributions was calculated as Cohen’s d: dMD-FA = 0.55, dFA-NOS = 0.46, dMD-
NOS = 0.99. 

 
Figure S7 A Pearson correlation r between the SCs with different weightings for every individual cortical brain 
atlas. The correlation was calculated for each subject included in the study (n=560), leading to a distribution of 
correlation values. B Pearson correlation r between the test r maps for different connectome weightings obtained 
from the RCP feature representation predictions of personality trait scores for individual cortical brain 
parcellations. The distributions each contain 15 values (three different subject groups x five personality trait 
scores). C Pearson correlation r between the test r maps obtained from the RCP feature representation 
predictions of a cognition score for individual cortical brain parcellations. Here, there is only one correlation value 
and not a distribution of correlations as these predictions were only performed for the mixed sex subject group 
and one composite cognition score. 

 
TBSS Analysis 
In addition to our prediction analysis, we ran a TBSS analysis for our data to obtain results 
which can directly be compared to published findings. The analysis was conducted for all three 
subject groups (mixed-sex, male only and female only) for the fractional anisotropy (FA) 
images. We used the FA images calculated with MRtrix3 [4] for the structural connectome 
(SC) construction and then used the implementation of the TBSS analysis provided by FSL 
[5]. All FA images were aligned to a standard space by applying a non-linear registration. 
Subsequently the mean across all aligned FA images was calculated to extract the mean FA 
skeleton from it. The skeleton was thresholded at a value of 0.2 and only voxels that were part 
of the thresholded skeleton mask were used in the following statistical analysis. A detailed 
description of the algorithm up to this point can be found in Ref. [6]. 
Voxel-wise cross-subject statistical analysis between FA and the different personality traits 
were performed with the randomize tool in FSL [5] which implemented a general linear model 
in conjunction with, here, 10,000 Monte Carlo simulations. Threshold-free cluster 
enhancement (TFCE)  [7] was applied for final voxel-wise inference. All personality trait scores 
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Correlations between test r maps cognitionCorrelations between test r maps personality



were demeaned before the analysis and both positive and negative associations between trait 
scores and FA values were investigated. 
Statistically significant findings are listed in Table 1. For each subject group, only one 
respective trait was found to significant correlate with a certain voxel clusters. For the mixed-
sex subject group openness was significantly positively correlated with the FA values in one 
cluster of 45 voxels, for the female only subject group neuroticism was significantly negatively 
correlated with the FA in a cluster of 31 voxels, and for the male only subject group a cluster 
of 12 voxels was significantly correlated with conscientiousness trait scores. The table further 
gives information on the mean and max absolute Pearson’s correlation across voxels in the 
cluster as well as the MNI coordinates of the center of gravity (COG) of the cluster. For all 
other traits in each of the subject groups, there were no significant findings. The previous 
literature relating personality to measures extracted from dwMRIs via TBSS only investigated 
mixed-sex subject groups. None of these approaches found only significant results for the 
openness trait as we did here for the mixed sex subject group: Several approaches found no 
significant results for openness ([8], [9], [10], [11]) and another approach found significant 
results for openness but also for agreeableness and neuroticism [12]. Jung et al. [13] found 
significant findings only for openness. However, they did not investigate any of the other traits. 
Overall, our findings only comprise comparably small clusters of voxels with low maximum 
absolute correlations for a few different traits for different subject groups. This therefore goes 
well in line with our analyses demonstrating weak and unstable prediction of personality traits 
from SC. 
 
     MNI152 coordinates of COG 
Subject 
Group 

Trait Cluster 
Size 

Mean r  Max |r| X Y Z 

All O 45 0.12 0.18 -43 -60 -5 
F N 31 -0.08 |-0.21| 44 -59 -7 
M C 12 0.14 0.14 37 17 37 

Table 1 Significant results for the TBSS analysis. Results are separated by subject groups (all – mixed-sex, F 
– females only, M – males only). Given is the trait for which significant results were found (O – Openness, N – 
Neuroticism, C – Conscientiousness), the cluster size in number of voxels, the mean Pearson’s correlation between 
the FA values and demeaned personality trait scores across all voxels in the cluster, the maximum Pearson’s 
correlation of all voxels in the cluster and the MNI coordinates of the center of gravity of the cluster. 
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